Precise upper bound for the strong edge chromatic number of sparse planar graphs

نویسندگان

  • Oleg V. Borodin
  • Anna O. Ivanova
چکیده

We prove that every planar graph with maximum degree ∆ is strong edge (2∆− 1)-colorable if its girth is at least 40⌊ 2 ⌋+1. The bound 2∆− 1 is reached at any graph that has two adjacent vertices of degree ∆.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong chromatic index of k-degenerate graphs

A strong edge coloring of a graph G is a proper edge coloring in which every color class is an induced matching. The strong chromatic index χs(G) of a graph G is the minimum number of colors in a strong edge coloring of G. In this note, we improve a result by Dębski et al. [Strong chromatic index of sparse graphs, arXiv:1301.1992v1] and show that the strong chromatic index of a k-degenerate gra...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Face-Degree Bounds for Planar Critical Graphs

The only remaining case of a well known conjecture of Vizing states that there is no planar graph with maximum degree 6 and edge chromatic number 7. We introduce parameters for planar graphs, based on the degrees of the faces, and study the question whether there are upper bounds for these parameters for planar edge-chromatic critical graphs. Our results provide upper bounds on these parameters...

متن کامل

On $t$-Common List-Colorings

In this paper, we introduce a new variation of list-colorings. For a graph G and for a given nonnegative integer t, a t-common list assignment of G is a mapping L which assigns each vertex v a set L(v) of colors such that given set of t colors belong to L(v) for every v ∈ V (G). The t-common list chromatic number of G denoted by cht(G) is defined as the minimum positive integer k such that ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2013